skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Claussen, Nikolas H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Animal morphogenesis often involves significant shape changes of epithelial tissue sheets. Great progress has been made in understanding the underlying cellular driving forces and their coordination through biomechanical feedback loops. However, our quantitative understanding of how cell-level dynamics translate into large-scale morphogenetic flows remains limited. A key challenge is finding the relevant macroscopic variables (order parameters) that retain the essential information about cell-scale structure. To address this challenge, we combine symmetry arguments with a stochastic mean-field model that accounts for the relevant microscopic dynamics. Complementary to previous work on the passive fluid- and solidlike properties of tissue, we focus on the role of actively generated internal stresses. Centrally, we use the timescale separation between elastic relaxation and morphogenetic dynamics to describe tissue shape change in the quasistatic balance of forces within the tissue sheet. The resulting geometric structure—a triangulation in tension space dual to the polygonal cell tiling—proves ideal for developing a mean-field model. All parameters of the coarse-grained model are calculated from the underlying microscopic dynamics. Centrally, the model explains how driven by autonomous active cell rearrangements becomes self-limiting as previously observed in experiments and simulations. Additionally, the model quantitatively predicts tissue behavior when coupled with external fields, such as planar cell polarity and external forces. We show how such fields can sustain oriented active cell rearrangements and thus overcome the self-limited character of purely autonomous active plastic flow. These findings demonstrate how local self-organization and top-down genetic instruction together determine internally driven tissue dynamics. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulatingDrosophilaembryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression. 
    more » « less
    Free, publicly-accessible full text available December 19, 2025